Characterization of the UDP glucuronosyltransferase activity of human liver microsomes genotyped for the UGT1A1*28 polymorphism.
نویسندگان
چکیده
The UGT1A1*28 polymorphism is known to correlate with altered clearance of bilirubin (Gilbert syndrome) and drugs such as 7-ethyl-10-[4-(1-piperidino)-1-piperidino] carbonyloxy camptothecin (CPT-11). Although this polymorphism is clinically relevant and leads to significant drug-related toxicity of CPT-11, in vitro tools to allow prediction of how it will affect the clearance of new chemical entities have not been completely developed. To allow a more complete assessment of whether new chemical entities will be affected by the UGT1A1*28 polymorphism, a panel of microsomes was prepared from 15 donor livers genotyped as UGT1A1*1/*1, UGT1A1*1/*28, and UGT1A1*28/*28 (five donors per genotype). The microsomes were phenotyped by measuring activities of a panel of substrates, both those reported to be conjugated specifically by UGT1A1 or by other UDP glucuronosyltransferase enzymes. Bilirubin, estradiol (3-OH), ethinyl estradiol (3-OH), and 7-ethyl-10-hydroxycamptothecin (SN-38) were found to show significantly lower rates of metabolism in the UGT1A1*28/*28 microsomes with no change in K(m) values. In addition, microsomes genotyped as UGT1A1*1/*28 showed intermediate rates of metabolism. Acetaminophen, 3'-azido-3'-deoxythymidine, muraglitazar, estradiol (17-OH), and ethinyl estradiol (17-OH) were all found to show similar rates of metabolism regardless of UGT1A1 genotype. Interestingly, muraglitazar (UGT1A3 substrate) showed an inverse correlation with glucuronidation of UGT1A1 substrates. These genotyped microsomes should provide a useful tool to allow a more comprehensive prediction of UGT1A1 metabolism of a new drug and gain insight into the effect of the UGT1A1*28 polymorphism.
منابع مشابه
Raloxifene glucuronidation in human intestine, kidney, and liver microsomes and in human liver microsomes genotyped for the UGT1A1*28 polymorphism.
Raloxifene, a selective estrogen receptor modulator, exhibits quite large interindividual variability in pharmacokinetics and pharmacodynamics. In women, raloxifene is metabolized extensively by different isoforms of UDP-glucuronosyltransferase (UGT) to its glucuronides. To gain an insight into intestine, kidney, liver, and lung glucuronidation of raloxifene, human microsomes of all tested orga...
متن کاملCorrelation between the UDP-glucuronosyltransferase (UGT1A1) TATAA box polymorphism and carcinogen detoxification phenotype: significantly decreased glucuronidating activity against benzo(a)pyrene-7,8-dihydrodiol(-) in liver microsomes from subjects with the UGT1A1*28 variant.
Of the hepatic UDP-glucuronosyltransferases (UGTs), only UGT1A1 and UGT1A9 exhibit activity against benzo(a)pyrene-trans-7R,8R-dihydrodiol [BPD(-)], precursor to the highly mutagenic anti-(+)-benzo(a)pyrene-7R,8S-dihydrodiol-9S,10R-epoxide. The UGT1A1*28 allelic variant contains an additional (TA) dinucleotide repeat in the "TATAA" box [(TA)(6)>(TA)(7)] of the UGT1A1 promoter that has been link...
متن کاملIdentification of human UDP-glucuronosyltransferase isoform(s) responsible for the glucuronidation of 2-(4-chlorophenyl)- 5-(2-furyl)-4-oxazoleacetic acid (TA-1801A).
We characterized the hepatic and intestinal UDP-glucuronosyltransferase (UGT) isoform(s) responsible for the glucuronidation of 2-(4-chlorophenyl)-5-(2-furyl)-4-oxazoleacetic acid (TA-1801A) in humans through several in vitro mechanistic studies. Assessment of a panel of recombinant UGT isoforms revealed the TA-1801A glucuronosyltransferase activity of UGT1A1, UGT1A3, UGT1A7, UGT1A9, and UGT2B7...
متن کاملGlucuronidation of thyroxine in human liver, jejunum, and kidney microsomes.
Glucuronidation of thyroxine is a major metabolic pathway facilitating its excretion. In this study, we characterized the glucuronidation of thyroxine in human liver, jejunum, and kidney microsomes, and identified human UDP-glucuronosyltransferase (UGT) isoforms involved in the activity. Human jejunum microsomes showed a lower K(m) value (24.2 microM) than human liver (85.9 microM) and kidney (...
متن کاملContribution of the different UDP-glucuronosyltransferase (UGT) isoforms to buprenorphine and norbuprenorphine metabolism and relationship with the main UGT polymorphisms in a bank of human liver microsomes.
The goal of this study was to evaluate the specific contribution of individual UDP-glucuronosyltransferase (UGT) isoforms in the metabolism of buprenorphine (BUP) and norbuprenorphine (Nor-BUP), as well as the impact of their genetic variations. The glucuronidation of BUP and Nor-BUP was examined using human liver microsomes (HLMs) and heterologously expressed UGTs. The individual contribution ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Drug metabolism and disposition: the biological fate of chemicals
دوره 35 12 شماره
صفحات -
تاریخ انتشار 2007